Cyber Security

Michael Sonntag

Institute of Networks and Security

MOTIVATION

Cyber Security is getting important: Pervasiveness of IT devices

- □ You car: It can be hacked (especially if it is autonomous!)
- □ Your radio/alarm clock: Too late for work
- Routers (Cisco): Zero-day exploits known for years by NSA, which got hacked and the problems were published

□ Cloud systems: Too many problems to list here!

Important distinction: Routers/cloud are managed by professionals, which are (hopefully) able to rapidly respond to problems

- But who is going to update the light switches (or the home routers: e.g. recently the default passwords of routers were shown to be trivially breakable)?
- Assumptions for smart homes/end users:
 - \Box They are not security professionals
 - \Box They won't pay for use restrictions, potentially causing problems
 - □ They are unwilling to insure against damages to third persons

JYU (5) INSTITUTE OF NETWORKS AND SECURITY

SOLUTION (?): AUTOMATING SECURITY

- Two fundamental issues:
 - □ Authentication: Who is it? Is it the persons claiming to be? Is someone there at all?
 - Note: For many end-users the "person" might be a device, as there is no longer exclusive human→ device interaction. Devices will interact with each other
 - E.g. allowing a drone to deliver a package inside the house, but only in the first room (opening door/window)
 - \Box Authorization: We know who it is \rightarrow Which permissions to assign?
 - What is a "guest" allowed to do?
 - Who (=security group!) is the boyfriend of the daughter?
- A matter of trust: Human \rightarrow Device, but also Device \rightarrow Device
- We can do this manually, of course, but who is going to do it?
 - □ Also note: For security we have false positive/negative problems
 - Unlocking the door: Very few false positives \rightarrow many false negatives!

AUTOMATIC IDENTIFICATION

- Humans: Facial recognition, gait identification, fingerprint sensors, RFID badges/devices carried etc
 - \Box Are we identifying the person (e.g. mobile phones do get stolen)?
 - Explicit interaction required (light switches/handles/knobs could integrate fingerprint sensors)?
 - Do we need signs notifying users of this (like video surveillance)?
- Devices: How can they be identified?
 - □ And what does that mean? Unique identity? Owner?
 - □ "Biometrics" at least in theory possible, e.g. small imperfections in production process; unchangeable long unique ids, ...
 - □ Assigning IDs, distributing certificates etc: End-users are not going to do this.
 - One possibility "enrolment": Once registering (simple!) is acceptable
 - □ Big problem: How to prevent devices from acquiring an arbitrary new identity?

AUTOM. ASSIGNMENT OF PERMISSION

- Technically easy, but who should received what?
- A suitable metaphor is needed, which also renders assignment (nontechnically!) easy
- Various options:
 - □ Learning: Difficult for devices, constant feedback needed
 - In contrast to human children devices do not live long enough!
 - How to trust other devices to learn from them? Are their rules suitable for the new device (e.g. toaster → fridge)?
 - □ Central server: Registration is already needed for identification
 - With varying degrees of centrality: State, neighbourhood, household
 - □ Default fallback:
 - Everything allowed: Customers are satisfied, no security
 - Everything forbidden: Good for learning, customers are annoyed
 - □ Configuration by customers: Would they really know how/what?
 - ☐ Configuration by experts: Who will pay for this?

SUGGESTION: HOUSEHOLD METAPHOR

Pre-configuration of devices according to a household metaphor:

Pros:

- □ Easily understood even by lay persons
- □ Suitable for humans
- □ Suitable for devices representing humans
 - They represent someone from a specific group
- □ Preconfiguration by manufacturer possible
- □ Sorting persons/devices into groups doable for non-experts

Cons:

- □ Not perfect security
 - Sometimes too many permissions
 - No perfect fit to standard groups for every device/person
- $\hfill\square$ Different according to society
 - A "household" in western Europe might differ from those in Asia
- □ Difficult to improve security if desired
- □ Standardization between manufacturers required

THE PERMISSION SYSTEM

- Permissions are kept simple, so users can understand them
 They need not manually create rules, assign permissions etc, but they must be able to understand why something is allowed/denied!
- Four "permissions" exist:
 - □ Which roles (humans and devices) may receive data?
 - Someone is asking a device \rightarrow Should it hand out the information?
 - $\hfill\square$ Which roles can be represented by devices to obtain data?
 - Whom can the "fridge" impersonate? The owner (→ read calendar for expected guests) or a guest (→ ask for temperature/weather forecast)?
 - $\hfill\square$ Which roles (humans and devices) may issue commands?
 - Requesting actions from devices \rightarrow Who may do this?
 - $\hfill\square$ Which roles may be represented by devices to issue commands?
 - Fridge: Owner (→ autonomously order food) or family (→ alarm because something nears expiration date)?
- Note: Devices "impersonate" humans and command other devices
 Humans don't impers. humans, devices don't command humans

THE SMART HOME SCENARIO

- An example for the household metaphor
 - $\hfill\square$ See e.g. the "fridge": How to classify it?
 - Data production = "family member"
 - Only persons with role "family member" can retrieve data, but e.g. vendors or guests cannot
 - Why? Typically only "family members" would be allowed to inspect it!
 - Data consumption (=impersonation) = "family member"
 - Who is expected to be present, what food is planned, general environmental information (current supply, temerpature)
 - Accepting commands = "owner", "utility provider"
 - Kids should not be able to turn it off or order lots of ice cream, but the smart meter may do the first
 - Issuing commands = "owner", "family member"
 - $\odot\,$ For ordering supplies or adding diary entries for shopping
 - □ Problems: Child adds "party with 20 other kids" in calendar → fridge buys food, utility provider can turn it off (erroneously) and spoil the food, …

JYU B INSTITUTE OF NETWORKS AND SECURITY

SYSTEM OVERVIEW

- Several roles are needed at least:
 - □ Owner: May do everything
 - Partner: Very wide permissions, but not everything
 - □ Family: Lots of commands, but privacy restrictions; may introduce other persons (→ guests) and devices (→ new things)
 - □ Medical doctor: Access to medical information
 - □ Craftsmen: Temporary physical access, detailed technical data
 - □ Utility provider: Permanent access but only electronically
 - □ Guest: Temporary physical access, use of general devices, but nothing private (= more command than data access)
- Devices can be preconfigured → Who may switch on a radio can be set in the factory (owner, partner, family, guest), with automatic individualisation of roles
 - $\hfill\square$ The "family" in house A is similar but not the same as in house B
- Only assigning persons to roles needs to be done individually

JYU (5) INSTITUTE OF NETWORKS AND SECURITY

IMPLEMENTATION

- What is needed technically?
 - Identification of users: Username/password on devices + tracking their movement, carried devices, explicit (fingerprints) or partial/implicit identification (TV child protection code), obtaining from other devices
 - □ Identification of devices: Public/private key cryptography
 - Central server for directory of devices, persons, and their roles: May be replicated to all devices (few&slow changes), including the permissions (all or only applicable ones)
 - □ Standardized communication between devices
- Organizational requirements:
 - □ Enrolment of devices upon "installation": pairing to central server
 - Assigning unknown persons to groups (easy) and their identification assets (more difficult)

SUMMARY AND OUTLOOK

While the approach presented will not produce perfect security, it is still much better than the current state of potentially very good, but actually nonexistent security

□ Focus on acceptability and understandability

- Requires extensive communication between devices, as not every device has a UI for identifying persons (and users wouldn't like this)
 Restriction possible: Devices only, and humans can do everything
- Based on a central server, but could work without, if permanent and reliable communication to several other devices is available
 Pairing to one device, distribution to others
 - Probably just a question of a few years!
- Realization chances?
 - □ Technically not that difficult, but standardization is an issue

https://www.ins.jku.at

THANK YOU FOR YOUR ATTENTION!

Michael Sonntag

michael.sonntag@ins.jku.at +43 (732) 2468 - 4137 S3 235 (Science park 3, 2nd floor)

JOHANNES KEPLER UNIVERSITÄT LINZ Altenberger Straße 69 4040 Linz, Österreich www.iku.at