Domain based Security for Mobile Agents

Micheal Sonntag
Friedrich Kupzog
Najmus Saqib Malik
Presentation Layout

- Background
- Domain based security
 - Vulnerability Level (VL) and Reputation Value (RV)
 - Algorithm for mobile agent security
 - Process of changing VL
 - RV behaviour and restriction state
- Simulation
- Results
- Conclusion
Background

- Mobile Agent – MA
- Agent platform – AP
- Security Manager – SM
- Security Services
- Domain
Domain based security

- **Vulnerability level – VL**
 - Represents the value for domain
 - Higher value suggest bad
 - Lower value is good

- **Reputation Value – RV**
 - Degree of honesty for a platform
 - Larger RV => platform is safe to visit

- VL and RV are maintained by the security manager
Domain based security

Algorithm for mobile agent

1) start execution of task and collect the results
2) calculate the hash code itself without results
3) compare this hashcode with one calculate in previous AP
4) if not same discard new results and move to SM else continue
5) send the hash code to SGB
6) if VL is H send results to SM
7) if VL is M and CP % (n/m) = 0, send results to SM
8) if VL is L then continue
9) fetch RV of next AP from SM
10) if RV is acceptable
 1) CP ++
 2) If RV of next AP is smaller than current AP then sends all
 the results to SM
11) else continue with step 9
Domain based security

Process for changing VL

- if 20% of mobile agents are modified, de-grade VL level
- if \((a \leq 5\% \times b)\) then up-grade VL level

where

\(a\) = No. of times the AP(s) are found malicious
\(b\) = No. of times the AP(s) are found honest
Domain based security

RV behaviour and Restriction State

- RV is calculated every time when MA found malicious, as

\[
RV = 1 - \frac{\sum_{i=1}^{Y} (\text{No. of MAs visit an AP})}{\sum_{j=1}^{X} (\text{No. of MAs that are modified by same AP})}
\]

where \(X = \text{No. of MAs visit an AP} \)

\(Y = \text{No. of MAs that are modified by same AP} \)

- if any platform modified certain percentage of visiting mobile agents then it is in restriction state

- no MA will visit AP until it comes out from restriction state
Domain based security

when AP is in Restriction State then

- SM send dummy MA to AP
- if dummy MA is modified on return
 - Recalculate RV value
 - if RV < 0.4 then terminate the AP
- else if No. of dummy MA is equal to Y
 - increment X
 - recalculate RV

when RV > 0.6, AP’s Restriction State is over
Scenario from Production Area

A MA from a company visit its different client’s site to collect orders.
OMNetpp is used for simulation

Initially

- Domain’s VL = 1 (low) and each AP has RV = 1 (high)
- The RV and VL assigned to MA is shown below

<table>
<thead>
<tr>
<th></th>
<th>MA</th>
<th>RV</th>
<th>VL</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td>0.95</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>0.90</td>
<td>2.00</td>
<td></td>
</tr>
</tbody>
</table>
Two cases:

- Average case: half of the AP modify the mobile agent with different periodicity
- Worst case: more than half of the AP modify MA with different periodicity

Periodicity

The size of a set of agents in which one agent is changed by AP
Two cases:
- Average case
- Worst case
Periodicity
the size of a set of agents in which one agent is changed by AP
Conclusion

- MA can decide whether to visit a domain or not.
- This cumulative decision saves the turnaround time for mobile agent.
- A global agreement upon the rules for RV and VL is required in a form of standard.